4898 words - 20 pages

The start of the modern science that we call "Computer Science" can be traced back to a long ago age where man still dwelled in caves or in the forest, and lived in groups for protection and survival from the harsher elements on the Earth. Many of these groups possessed some primitive form of animistic religion; they worshipped the sun, the moon, the trees, or sacred animals. Within the tribal group was one individual to whom fell the responsibility for the tribe's spiritual welfare. It was he or she who decided when to hold both the secret and public religious ceremonies, and interceded with the spirits on behalf of the tribe. In order to correctly hold the ceremonies to ensure good harvest ...view middle of the document...

Thus, the abacus works on the principle of place-value notation: the location of the bead determines its value. In this way, relatively few beads are required to depict large numbers. The beads are counted, or given numerical values, by shifting them in one direction. The values are erased (freeing the counters for reuse) by shifting the beads in the other direction. An abacus is really a memory aid for the user making mental calculations, as opposed to the true mechanical calculating machines which were still to come.For over a thousand years after the Chinese invented the abacus, not much progress was made to automate counting and mathematics. The Greeks came up with numerous mathematical formulae and theorems, but all of the newly discovered math had to be worked out by hand. A mathematician was often a person who sat in the back room of an establishment with several others and they worked on the same problem. The redundant personnel working on the same problem were there to ensure the correctness of the answer. It could take weeks or months of labourious work by hand to verify the correctness of a proposed theorem. Most of the tables of integrals, logarithms, and trigonometric values were worked out this way, their accuracy unchecked until machines could generate the tables in far less time and with more accuracy than a team of humans could ever hope to achieve.Blaise Pascal, noted mathematician, thinker, and scientist, built the first mechanical adding machine in 1642 based on a design described by Hero of Alexandria (2AD) to add up the distance a carriage travelled. The basic principle of his calculator is still used today in water meters and modern-day odometers. Instead of having a carriage wheel turn the gear, he made each ten-teeth wheel accessible to be turned directly by a person's hand (later inventors added keys and a crank), with the result that when the wheels were turned in the proper sequences, a series of numbers was entered and a cumulative sum was obtained. The gear train supplied a mechanical answer equal to the answer that is obtained by using arithmetic.This first mechanical calculator, called the Pascaline, had several disadvantages. Although it did offer a substantial improvement over manual calculations, only Pascal himself could repair the device and it cost more than the people it replaced! In addition, the first signs of technophobia emerged with mathematicians fearing the loss of their jobs due to progress.While Tomas of Colmar was developing the first successful commercial calculator, Charles Babbage realized as early as 1812 that many long computations consisted of operations that were regularly repeated. He theorized that it must be possible to design a calculating machine which could do these operations automatically. He produced a prototype of this "difference engine" by 1822 and with the help of the British government started work on the full machine in 1823. It was intended to be steam-powered; fully...

Tap into the world’s largest open writing community